Phenanthridine or isoquinoline are good reagents for the synthesis of enamino esters Mahmoud Nassiri^b, Reza Heydari^a, Nourollah Hazeri^a, Sayyed Mostafa Habibi-Khorassani^a,

^aDepartment of Chemistry, Sistan and Balouchestan University, PO Box 98135-674, Zahedan, Iran ^bFaculty of Marine Science, Chabahar maritime University, Chabahar, Iran

Malek Taher Maghsoodlou^{a*} and Forough Jalili Milani^a

A new class of enamino esters has been isolated in excellent yields from the 1:1:1 addition reaction between phenanthridine or isoquinoline and activated acetylenic esters in the presence of heterocyclic NH compounds (succinimide, 5-nitroindazole, benzoxazolinone, 6-chlorobenzoxazolinone, carbazole and 3,6-dibromocabazole) or 1,3-dicarbonyl compounds such as 1,3-dimethylbarbituric acid and 1,3-diethyl-2-thiobar- bituric acid.

Keywords: enamino esters, phenanthridine, isoquinoline, activated acetylenic esters, heterocyclic NH or 1,3-dicarbonyl compounds

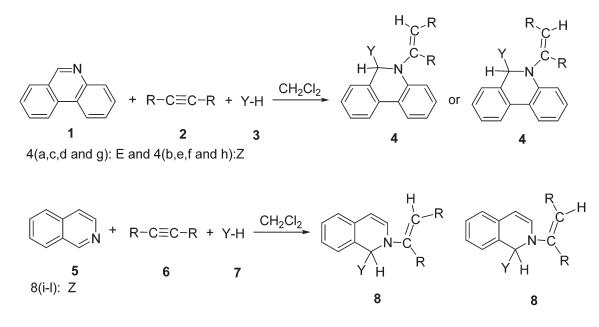
Heterocyclic rings are present as fundamental components in the skeleton of more than half of the biologically active compounds produced naturally.¹ Phenanthridines are important core structures found in a variety of natural products and other biologically important molecules with a wide rang of biological activities and applications,²⁻⁵ including antibacterial, antiprotozoal, anticancer, antimicrobial, anti-inflammatory, antivirial, antioxidant7-13 and also with applications as drugs,6 DNA targeting agents,¹⁴ dyes,¹⁵ and probes.¹⁶ Isoquinoline is also present in various natural products such as cryptaustoline and cryptowoline.¹⁷ They are known to exhibit various biological activities¹⁸⁻²² such as antileukaemic,²³ tubulin polymerisation inhibitory²⁴ and anti-tumour activities.²⁵ As previously reported,26 the reaction between phenanthridine and 2 mol equiv. dimethyl acetylenedicarboxylate, led to the formation of a new ring on the phenanthridine compound. We now describe an efficient synthesis of a new class of enamino esters (see Scheme 1).

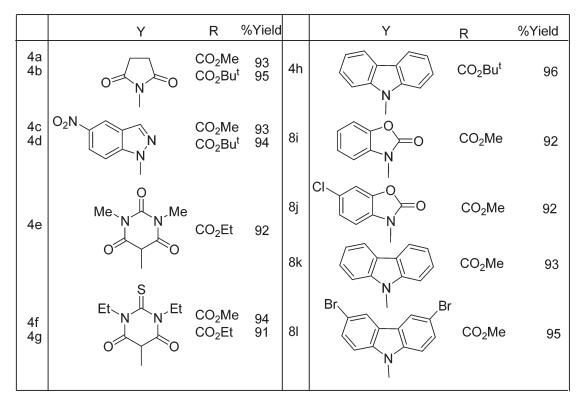
Results and discussion

An efficient synthesis of a new class of enamino esters from reaction between phenanthridine 1 or isoquinoline 5 and activated acetylenic esters 2 or 6 as a Michael acceptor^{27–34} was undertaken in the presence of heterocyclic NH compounds (succinimide, 5-nitroindazole, benzoxazole, 6-chlorobenzoxazole, carbazole and 3,6-dibromocarbazole) or 1,3-dicarbonyl compounds such as 1,3-dimethylbarbituric acid and 1,3diethyl-2-thiobarbituric acid at ambient temperature. Reactions were carried out by first mixing the phenanthridine or isoquinoline and heterocyclic NH or 1,3-dicarbonyl compounds and then the acetylenic ester was added slowly. The reactions proceeded smoothly in CH₂Cl₂ and then the whole reaction mixture solidified into yellow solid within a few hours. The 1H and 13C NMR spectra of the crude products clearly indicated the formation of enamino esters 4a-h and 8i-l. No product other than 4a-h and 8i-l could be detected by NMR spectroscopy. The structures of compounds 4a-h and 8i-I were confirmed by elemental analyses, mass, IR, ¹H NMR and ¹³C NMR spectra. The ¹H NMR 500 MHz spectrum of 4a exhibited a signal for two methylene ($\delta = 2.81$, s, 4H, 2CH₂, $O=C-CH_2-CH_2-C=O$, two sharp line ($\delta = 3.67$ and 3.77) arising from methoxy protons, olefinic proton, which appear as a singlet ($\delta = 7.04$, 1H, s, C=CH–CO₂CH₃), and also a sharp line for methine proton (δ = 9.26, 1H, s, NCHN). Aromatic protons, along with multiplets at $\delta = 7.19 - 8.48$ ppm for the phenanthridine moiety. The ¹³C NMR spectrum of 4a showed 23 distinct resonances in agreement with the proposed structure.

In addition, product **4a** displayed ¹³C NMR resonances at δ 121.86, 122.30 and 124.10 ppm, respectively for the NCHN, N–C=CH–CO₂CH₃, N–C=CH–CO₂CH₃ units. The carbonyl groups resonances in the ¹³C NMR spectra of **4a** appear at δ = 161.73, 162.91, 174.78 and 178.57 ppm. The ¹H and ¹³C NMR spectra of compounds **4b–h** and **8i–l** are similar to those of **4a**. The ¹H NMR of each of the isolated product **4** (**a**, **c**, **d** and **g**) exhibited a N–C=CH proton signal at about 7.04–7.28 ppm, which is in agreement with the (*E*) configuration for the vinyl moiety in **4**. Compounds **4** (**b**, **e**, **f** and **h**) and **8** (**i–l**) exhibited a N–C=CH proton signal at about 5.29–6.73 ppm, which is in agreement with the (*Z*) configuration^{18, 35,36} (see Scheme 2).

Briefly, we have developed a new method to access a novel class of heterocyclic derivatives. The present method has the advantage that, not only is the reaction performed under neutral conditions, but also the substances can be mixed without any activation or modifications. It seems that, the simplicity of recent procedure makes it as an interesting alternative method in comparison with other approaches.

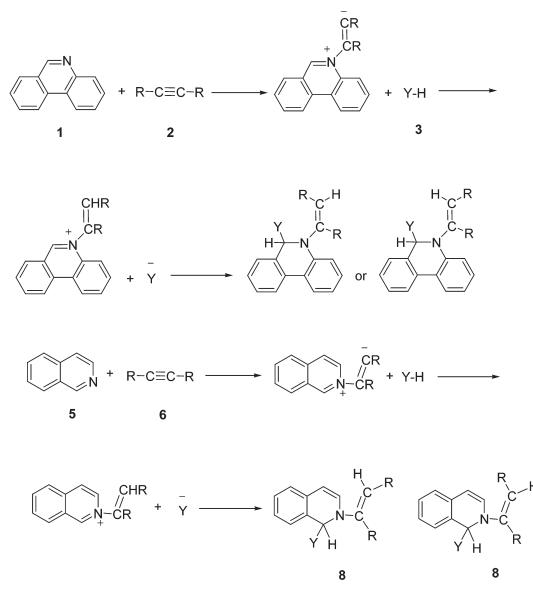

Experimental


Melting points and IR spectra of all compounds were measured on an Electrothermal 9100 apparatus and a Shimadzu IR-460 spectrometer, respectively. The ¹H, ¹³C, and ³¹P NMR spectra were obtained with a Bruker DRX-500 Avance instrument using CDCl₃ as applied solvent and TMS as internal standard at 500.1, 125.8, and 202.4 MHz respectively. In addition, the mass spectra were recorded on a GCMS-QP5050A mass spectrometer operating at an ionization potential of 70 eV. Elemental analysis for C, H and N were performed using a Heraeus CHN–O-Rapid analyser. Activated acetylenic esters, Phenanthridine, isoquinoline, succinimide, 5-nitroindazole, benzoxazole, 5-chlo-robenzoxazole, carbazole, 3,6-dibromocarbazole, 1,3-dimethylbarbituric acid and 1,3-diethyl-2-thiobarbituric acid were purchased from Fluka, (Buchs, Switzerland) and used without further purifications.

Typical procedure (exemplified by (4a)

Dimethyl 2-[6-(2,5-dioxopyrrolidin-1-yl)phenanthridin-5(6H)-yl] fumarate (**4a**): To a magnetically stirred solution of phenanthridine (0.18 g, 1 mmol) and succinimide (0.09 g, 1 mmol) in CH₂Cl₂ (10 mL) was added, dropwise, a mixture of dimethyl acetylenedicarboxylate (0.14g 1 mmol) in CH₂Cl₂ (5 mL) at -10 °C over 10 min. After approximately a few hours stirring at ambient temperature, the whole reaction mixture solidified into a brown solid, the solvent was then removed under reduced pressure and product washed with cold diethyl ether (2 × 5 mL) and it was obtained as brown powder, yield 93%, 0.39g m.p. 100–102 °C, IR (v_{max}, cm⁻¹): 1743 (C=O). MS, *m/z* (%) = 420 (M⁺, 4), 389 (M–OCH₃, 54), 361 (M–CO₂CH₃, 41), 358 (M–2OCH₃, 43), 322(C₄H₄NO₂, 61). Anal. Calcd for C₂₃H₂₀ N₂O₆ (420.16): C, 65.69; H, 4.80; N, 6.66. Found: C, 65.78; H, 4.76; N, 6.73%. ¹H NMR (500.1 MHz, CDCl₃), $\delta_{\rm H} 2.82$ (4H, s, O=C–CH₂–CH₂–C=O), 3.67 and 3.77 (6H, 2s, 20CH₃), 7.04 (1H, s, N–C=CH–CO₂CH₃), 7.19–8.48 (8H_{aro}, m, 8CH, phenanthridine), 9.26 (1H, s, NCHN). ¹³C NMR (125.8 MHz,

^{*} Correspondent. E-mail: MT_maghsoodlou@yahoo.com



CDCl₃), 28.88 and 29.62 (2CH₂, O=C–CH₂–CH₂–C=O), 52.50 and 53.49 (2OCH₃), 121.86 (NCHN), 122.30 (N–C=CH–CO₂CH₃), 124.10 (N–C=CH–CO₂CH₃), 125.86, 127.62, 127.86, 128.30, 128.71, 129.11, 129.37, 132.09, 132.52, 132.72, 142.00 and 152.60 (12C, phenanthridine), 161.73 and 162.91 (2NC=O), 174.78 and 178.57 (2C=O, ester).

Di-tert-*butyl* 2-*[*6-(2,5-*dioxopyrrolidin-1-yl*)*phenanthridin-5*(6H)-*yl*] *maleate* (**4b**): Yellow powder, yield 95%, 0.48g m.p. 102–104 °C, IR (v_{max} , cm⁻¹): 1717 (C=O). MS, *m/z* (%) = 504 (M⁺, 3), 431 (M–OC(CH₃)₃, 63), 358 (M–2OC(CH₃)₃, 24), 302 (M–2CO₂C(CH₃)₃, 17), 134 (C₇H₄NO₂, 23). Anal. Calcd for C₂₉H₃₂N₂O₆ (504.25): C, 69.01; H, 6.40; N, 5.55. Found: C, 68.92; H, 6.47; N, 5.61%. ¹H NMR (500.1 MHz, CDCl₃), δH 1.44 and 1.48 (18H, 2s, 2OC(*CH₃*)₃), 2.83 (4H, s, O=C–CH₂–CH₂–C=O), 6.01 (1H, s, N–C=*CH*–CO₂C(CH₃)₃),

7.66–8.62 (8 H_{aro} , m, 8CH, phenanthridine), 9.28 (1H, s, NCHN).¹³C NMR (125.8 MHz, CDCl₃), 26.75 and 26.58 (6CH₃), 27.73 and 27.79 (2CH₂, O=C-CH₂-CH₂-C=O), 81.50 and 82.79 (2C, 2CO2*C*(CH₃)₃), 120.82 (NCHN), 121.18 (1C, N-C=CH-CO₂C(CH₃)₃), 123.05 (1C, N-C=CH-CO₂C(CH₃)₃), 125.31, 126.07, 126.47, 127.67, 127.75, 128.97, 129.04, 130.02, 131.18, 131.51, 143.34 and 152.50 (12C, phenanthridine), 159.25 and 160.94 (2NC=O), 173.52 and 173.93 (2C=O, ester).

Dimethyl 2-[6-(5-nitro-1H-indazole-1-yl)phenanthridin-5(6H)-yl] fumarate (**4c**): Brown powder, yield 93%, 0.45g m.p. 120–122 °C, IR (v_{max} , cm⁻¹): 1740 (C=O). MS, m/z (%) = 484 (M⁺, 3), 425 (M–CO₂CH₃, 41), 422 (M–2OCH₃, 51), 366 (M–2CO₂CH₃, 22). Anal. Calcd for C₂₆H₂₀N₄O₆ (484.16): C, 64.44; H, 4.16; N, 11.57. Found: C, 64.32; H, 4.21; N, 11.63%. ¹H NMR (500.1 MHz, CDCl₃), δ H 3.59 and 3.88

Scheme 2

(6H, 2s, 2OCH₃), 7.24 (1H, s, N–C=CH–CO₂CH₃), 7.68–8.71 (11H_{aro}, m, 11CH), 8.36 (1H, s, N=CH), 9.36 (1H, s, NCHN). ¹³C NMR (125.8 MHz, CDCl₃), δ C 52.60 and 53.76 (2OCH₃), 110.79 (NCHN), 118.85 (N–C=CH–CO₂CH₃), 122.05, 122.41, 121.42 and 123.81 (4C, phenanthridine), 124.34 (N–C=CH–CO₂CH₃), 125.05, 125.75, 127.25, 127.90, 128.08, 128.20, 129.35 and 129.65 (8C, phenanthridine), 132.46, 133.11, 136.24, 138.45, 141.71, 142.45, 143.16 and 152.51 (7C, nitroindazol), 162.51 and 162.95 (2C=O, ester).

Di-tert-butyl 2-[6-(5-nitro-1H-indazole-1-yl)phenanthridin-5(6H)-yl] fumarate (4d): Yellow powder, yield 94%, 0.53g m.p. 103–105 °C, IR (v_{max} , cm⁻¹): 1715 (C=O). MS, m/z (%) = 568 (M⁺, 5), 511 (M–C(CH₃)₃, 19), 495 (M–OC(CH₃)₃, 27), 467 (M–CO₂C(CH₃)₃, 46). Anal. Calcd for C₃₂H₃₂N₄O₆ (568.25): C, 67.58; H, 5.68; N, 9.85. Found: C, 67.70; H, 5.61; N, 9.97%. ¹H NMR (500.1 MHz, CDCl₃), δ H 1.16 and 1.49 (18H, 2s, 2OC(CH₃)₃), 7.11 (1H, s, N–C=CH–CO₂C(CH₃)₃), 7.26–8.62 (10H_{aro}, m, 10CH), 8.35 (1H, s, N=CH), 8.74 (1H, s, 02N–C=CH), 9.29 (1H, s, NCHN).¹³C NMR (125.8 MHz, CDCl₃), 109.80 (NCHN), 117.64 (1C, N–C=CH–CO₂C(CH₃)₃), 121.20 (1C, N–C=CH–CO₂C(CH₃)₃), 123.06, 125.32, 126.07, 126.48, 127.70, 127.79, 128.33, 129.04 and 130.02 (12C, phenanthridine), 131.52, 134.87, 136.71, 141.44 and 141.92 (5C, nitroindazol), 143.35 (N=CH), 152.51 (O2N–C), 159.98 and 161.03 (2C=O, ester).

Diethyl 2-(6-(1,3-dimethyl-2,4,6-trioxo-hexahydropyrimidin-5-yl) phenanthridin-5(6H)-yl)maleate (4e): Brown powder, yield 92%,

0.46g m.p. 109–111 °C, IR (v_{max}, cm⁻¹): 1618, 1635 and 1743 (C=O). MS, m/z (%) = 359 (M-2CO₂Et, 41), 350 (M-C₆H₇N₂O₃, 72), 305 (M-C₆H₇N₂O₃ and OEt, 14), 321 (M-C₆H₇N₂O₃ and Et, 10), 292 (M-C₆H₇N₂O₃ and 2Et, 100), 277 (M-C₆H₇N₂O₃ and CO₂Et, 15), 264 (M-C₆H₇N₂O₃ and CH-CO₂Et, 36), 179 (C₁₃H₉N, 92). Anal. Calcd for C₂₇H₂₇N₃O₇ (505.21): C, 64.13; H, 5.39; N, 8.31. Found: C, 64.21; H, 5.46; N, 8.35%. 1H NMR (500.1 MHz, CDCl_3), $\delta_{\rm H}$ 1.15 and 1.40 $(6H, 2t, {}^{3}J_{HH} = 7.1 \text{ Hz}, 20\text{CH}_{2}CH_{3}), 2.72 \text{ and } 3.40 (6H, 2s, 2NCH_{3}),$ 4.16 and 4.38 (4H, 2m, 2ABX3system, 2OCH2CH3), 4.81 (1H, d, 3JHH = 7.3 Hz, O=C-CH-C=O), 5.22 (1H, d, 3JHH = 7.2 Hz, NCHCH), 5.63 (1H, s, N-C=CH-CO₂CH₂CH₃), 6.69-7.83 (8H_{aro}, m, 8CH, phenanthridine). ¹³C NMR (125.8 MHz, CDCl₃), 13.87 and 14.20 (2OCH₂CH₃), 27.68 and 29.03 (2NCH₃), 52.85 (2OCH₂CH₃), 62.17 (NCHCH), 67.06 (O=C-CH-C=O), 74.45 (1C, N-C=CH-CO₂CH₂ CH₃), 112.55, 117.24 and 119.62 (5C, phenanthridine), 122.12 (1C, N-C=CH-CO₂CH₂CH₃), 125.00, 125.33, 127.07, 130.01, 130.24, 130.63 and 144.36 (7C, phenanthridine), 166.10 and 168.06 (O=C-C-C=O), 169.07 and 171.72 (2C=O, ester).

Dimethyl 2-[6-(1,3-diethyl-4,6-dioxo-2-thioxohexahydropyrimidin-5-yl)phenanthridin-5(6H)-yl]maleate (**4f**): Brown powder, yield 94%, 0.48 g m.p. 109–111 °C, IR (v_{max} , cm⁻¹): 1620, 1634 and 1729 (C=O). MS, m/z (%) = 403 (M–2CO₂Me, 22), 342 (M–C₁₃H₉N, 28), 323 (M–C₈H₁₀N₂O₂S, 32), 322 (M–C₈H₁₁N₂O₂S, 100), 264 (M–C₈H₁₀N₂O₂S and CO₂Me, 30), 204 (M–C₈H₁₁N₂O₂S and 2CO₂Me, 38), 179 (C₁₃H₉N, 92). Anal. Calcd for C₂₇H₂₇N₃O₆S (521.21): C, 62.16; H, 5.22; N, 8.06. Found: C, 62.35; H, 5.18; N, 8.12%. ¹H NMR (500.1 MHz, CDCl₃), δ H 0.64 and 1.37 (6H, 2t, ³*J*_{HH} = 6.7 Hz, 2NCH₂*CH*₃), 3.63 and 3.92 (6H, 2s, 2OCH₃), 4.47 (4H, bro, 2N*CH*₂CH₃), 4.87 (1H, d, ³*J*_{HH} = 7.2 Hz, O=C-*CH*-C=O), 5.27 (1H, d, ³*J*_{HH} = 7.2 Hz, N*CH*CH), 5.67 (1H, s, N-C=*CH*-CO₂CH₃), 6.74–7.88 (8H_{aro}, m, 8CH, phenanthridine). ¹³C NMR (125.8 MHz, CDCl₃), δ C 10.31 and 10.95 (2NCH₂*CH*₃), 42.08 and 43.15 (2N*CH*₂CH₃), 51.89 and 52.13 (2OCH₃), 65.30 (N*C*HCH), 66.22 (O=C-CH-C=O), 73.97 (N-C=*C*H-CO₂CH₃), 111.12, 111.15, 116.15, 118.43, 121.07 and 12113 (6C, phenanthridine), 123.24 (N-C=CH-CO₂CH₃), 124.86, 126.28, 128.86, 129.15, 129.51, and 142.80 (6C, phenanthridine), 164.04 and 165.12 (O=*C*-*C*-*C*=O), 168.50 and 170.99 (2C=O, ester), 177.08 (C=S).

Diethyl 2-[6-(1,3-diethyl-4,6,dioxo-2-thioxohexahydropyrimidin-5-yl) phenanthridin-5(6H)-yl)fumarate (4g): Brown powder, yield 91%, 0.49g m.p. 163-165 °C, IR (v_{max}, cm⁻¹): 1627, 1641 and 1732(C=O). MS, m/z (%) = 306 (M-C₈H₁₀N₂O₂S and OEt, 37), 276 (M-C₈H₁₁N₂O₂S, OEt and Et, 10), 264 (M-C₈H₁₁N₂O₂S and CH-CO₂Et, 34), 248 (M-C₈H₁₁N₂O₂S, Et and CO₂Et, 18), 204 (M-C₈H₁₁N₂O₂S and 2CO₂Et, 64), 179 (C13H9N, 100), 167 (C6H3N2O2S, 38). Anal. Calcd for C₂₉H₃₁N₃O₆S (549.24): C, 63.36; H, 5.69; N, 7.65. Found: C, 63.42; H, 5.73; N, 7.71%. ¹H NMR (500.1 MHz, CDCl₃), $\delta_{\rm H}$ 1.07 and 1.22 (12H, 2t, ${}^{3}J_{HH} = 6.9$ Hz, 2OCH₂CH₃ and 2NCH₂CH₃), 4.32 and 4.50 (8H, 2m, 2ABX3system, 2OCH₂CH₃ and 2NCH₂CH₃), 5.03 (1H, d, ${}^{3}J_{HH} = 8.4$ Hz, O=C-CH-C=O), 6.24 (1H, d, ${}^{3}J_{HH} = 8.4$ Hz, NCHCH), 7.28 (1H, s, N-C=CH-CO₂CH₂CH₃), 7.31-8.18 (8H_{aro}, m, 8CH, phenanthridine). 13C NMR (125.8 MHz, CDCl₃), 12.30, 12.33, 12.41 and 12.69 (2OCH₂CH₃ and 2NCH₂CH₃), 42.97 and 44.16 (2NCH₂CH₃), 51.31 and 53.65 (2OCH2CH3), 63.48 (NCHCH), 65.14 (O=C-CH-C=O), 86.30 (1C, N-C=CH-CO₂CH₂CH₃), 114.95, 117.07, 117.63, 119.87, 120.20, 120.57, 120.17 and 122.85 (8C, phenanthridine), 124.58 (1C, N-C=CH-CO2CH2CH3), 125.36, 129.04, 132.96 and 142.38 (4C, phenanthridine), 163.06 and 165.80 (O=C-C-C=O), 167.87 and 169.99 (2C=O, ester), 177.13 (C=S).

Di-tert-butyl 2-(6-(9H-carbazole-9-yl)phenanthridin-5(6H)-yl)maleate (4h): Yellow powder, yield 96%, 0.54g m.p. 185-187 °C, IR (v_{max}, cm⁻¹): 1684 and 1713 (C=O). MS, m/z (%) = 350 (M-C₁₂H₈N and CMe₃, 100), 292 (M–C₁₂H₈N and 2CMe₃, 65), 204 (M–C₁₂H₈N and 2CO2CMe3, 64), 179 (C13H9N, 56), 167 (C12H9N, 81). Anal. Calcd for C37H36N2O4 (572.28): C, 77.58; H, 6.34; N, 4.89. Found: C, 77.65; H, 6.41; N, 4.94%. ¹H NMR (500.1 MHz, CDCl₃), δH 0.84 and 1.19 (18H, 2s, 2OC(CH₃)₃), 5.29 (1H, s, N-C=CH-CO₂C(CH₃)₃), 7.29 (1H, s, NCHCH), 6.75-8.06 (16H_{aro}, m, 16CH, phenanthridine and carbazol).13C NMR (125.8 MHz, CDCl3), 26.11 and 26.57 (6C, 2CO₂C(CH₃)₃), 68.63 (1C, NCHN), 81.35 and 81.39 (2C, 2CO2C(CH₃)₃), 109.57(1C, N-C=CH-CO₂C(CH₃)₃), 114.40, 114.43, 118.22, 118.76 118.89 and 119.18 (6C, phenanthridine), 120.98, 122.36 and 122.74 (3C, carbazol), 124.05 (1C, N-C=CH-CO2C (CH₃)₃), 126.53, 127.52, 127.69, 128.10 and 130.69 (5C, phenanthridine), 138.50, 139.21, 140.28 and 141.62 (9C, carbazol), 141.90 (1C, phenanthridine), 161.49 and 162.47 (2C=O, ester).

Dimethyl 2-[1-(2-oxobenzo[d]oxazol-3(2H)-yl)isoquinoline-2(1H)-yl] maleate (**8i**): Brown powder, yield 92%, 0.37g m.p. 112–114 °C, IR (v_{max} , cm⁻¹): 1634 and 1727 (C=O). MS, m/z (%) = 406 (M⁺, 5), 347 (M–CO₂CH₃, 59), 344 (M–2OCH₃, 16), 134 (C₇H₄NO₂, 29). Anal. Calcd for C₂₂H₁₈N₂O₆ (406.14): C, 65.00; H, 4.47; N, 6.89. Found: C, 64.95; H, 4.52; N, 6.94%. ¹H NMR (500.1 MHz, CDCl₃), δ H 3.70 and 3.87 (6H, 2s, 2OCH₃), 6.19 (1H, d, ³J_{HH} = 7.7 Hz, N–CH=CH), 6.57 (1H, d, ³J_{HH} = 7.7 Hz, N–CH=CH), 6.73 (1H, s, NCHN). ¹³C NMR (125.8 MHz, CDCl₃), δ C 51. 90 and 52.23 (2OCH₃), 96.34 (N–2CH–CO₂CH₃), 124.80 (N–C=CH–CO₂CH₃), 124.19, 125.76, 126.21, 126.94, 127.57, 127.79, 128.63, 128.90, 129.00, 129.16, 129.87, 130.11, 130.41 and 131,79 (13C, 13CH, isoquinolin and benzoxazolinon), 142.85 (1C, N–C=O), 152.00 (1C, CH–O–C=O), 164.52 and 165.18 (2C=O, ester).

Dimethyl 2-[1-(6-chloro-2-oxobenzo[d]oxazol-3(2H)-yl]isoquinoline-2(1H)-yl]maleate (**8j**): Brown powder, yield 92%, 0.40g m.p. 106– 108 °C, IR (ν_{max}, cm⁻¹): 1641 and 1730 (C=O). MS, *m/z* (%) = 440 (M⁺, 4), 409 (M–OCH₃, 18), 381 (M–CO₂CH₃, 54), 378 (M–2OCH₃, 29). Anal. Calcd for C₂₂H₁₇ClN₂O₆ (440.63): C, 59.91; H, 3.89; N, 6.35. Found: C, 60.02; H, 3.83; N, 6.41%. ¹H NMR (500.1 MHz, CDCl₃), δH 3.73 and 3.89 (6H, 2s, 2OCH₃), 5.97 (1H, d, ³ J_{HH} = 7.8 Hz, N–CH=CH), 6.45 (1H, d, ³ J_{HH} = 7.8 Hz, N–CH=CH), 6.54 (1H, s, N–C=CH–CO₂CH₃), 7.13–8.54 (7H_{aro}, m, 7CH,), 9.41 (1H, s, NCHN). 13 C NMR (125.8 MHz, CDCl₃), &C 52. 60 and 53.21 (2OCH₃), 110.34 (N–C=CH–CO₂CH₃), 123.72 (N–C=CH–CO₂CH₃), 124.69, 125.34, 126.20, 126.44, 127.50, 128.00, 128.25, 128.93, 129.11, 129.26, 130.27, 130.89 and 132,19 (12C, 12CH, isoquinolin and benzoxazolinon), 142.77 (1C, N–C=O), 151.32 (1C, C–Cl), 152.38 (1C, CH–O–C=O), 162.46 and 163.79 (2C=O, ester).

Dimethyl 2-[1-(9H-carbazole-9-yl) isoquinoline-2(1H)-yl]maleate (8k): Brown powder, yield 93%, 0.41g m.p. 112-114 °C, IR (v_{max}, cm⁻¹): 1619 and 1738 (C=O). MS, m/z (%) = 438 (M⁺, 7), 379 (M-CO₂CH₃, 44), 320(M-2CO₂CH₃, 33), 166 (C₁₂H₈N, 27). Anal. Calcd for C₂₇H₂₂N₂O₄ (438.17): C, 73.94; H, 5.06; N, 6.39. Found: C, 74.02; H, 5.11; N, 6.43%. ¹H NMR (500.1 MHz, CDCl₃), δH 3.52 and 3.69 (6H, 2s, 2OCH₃), 5.39 (1H, s, N-C=CH-CO₂CH₃), 6.15 (1H, d, ${}^{3}J_{HH}$ = 7.9 Hz, N–CH=CH, isoiquinolin), 6.66 (1H, d, ${}^{3}J_{HH}$ = 7.9 Hz, N-CH=CH, isoiquinolin), 7.81 (1H, s, NCHN), 6.91-8.17 (12Haro, m, 12CH, isoiquinolin and carbazol), ¹³C NMR (125.8 MHz, CDCl₃), 51.42 and 52.24 (20CH₃), 66.18 (NCHN), 96.93 (N-C=CH-CO₂CH₃), 106.18, 109.95, 110.76, 110.88, 119.08, 120.15, 120.37 and 120.52 (9C, isoquinoline and carbazol), 123.87 (N-C=CH-CO₂CH₃), 125.03, 125.38, 125.80, 126.18, 126.61, 126.77, 127.69, 127.76, 129.23, 138.67 and 149.24 (11C, isoquinoline and carbazol), 164.09 and 166.55 (2C=O, ester).

Dimethyl 2-[1-(3,6-dibrmo-9H-carbazole-9-yl)isoquinoline-2(1H)-yl] maleate(81): Brown powder, yield 95%, 0.57g m.p. 130-132 °C, IR (v_{max}, cm^{-1}) : 1623 and 1743 (C=O). MS, m/z (%) = 596 (M⁺, 6), 565 (M-OCH₃, 64), 537 (M-CO₂CH₃, 61), 326 (C₁₂H₈Br₂N, 34). Anal. Calcd for C₂₇H₂₀Br₂N₂O₄ (596.15): C, 54.35; H, 3.38; N, 4.70. Found: C, 54.31; H, 3.44; N, 4.78%. ¹H NMR (500.1 MHz, CDCl₃), δH 3.74 and 3.88 (6H, 2s, 2OCH₃), 6.19 (1H, d, ${}^{3}J_{HH} = 7.8$ Hz, N- CH=CH, isoiquinolin), 6.46 (1H, s, N-C=CH-CO₂CH₃), 6.97 (1H, d, ${}^{3}J_{HH} = 7.8$ Hz, N-CH=CH, isoiquinolin), 7.14-8.45 (10Haro, m, 10CH, isoiquinolin and carbazol), ¹³C NMR (125.8 MHz, CDCl₃), 51.44 and 53.15 (2OCH₃), 69.34 (NCHN), 98.74 (N-C=CH-CO₂CH₃), 107.12, 110.36, 110.70, 110.85, 119.07, 120.11, 120.36, 120.40 and 120.52 (9C, isoquinoline and carbazol), 124.82 (N-C=CH-CO₂CH₃), 124.19, 125.57, 125.80, 126.20, 127.14, 126.77, 128.69, 136.36, 139.35, 140.37 and 156.15 (11C, isoquinoline and carbazol), 164.79 and 165.85 (2C=O, ester).

We gratefully acknowledge financial support from the Research Council of University of Sistan and Balouchestan.

Received 2 May 2010; accepted 26 May 2010

Paper 1000100 doi: 10.3184/030823410X12767058123665 Published online: 28 July 2010

References

- A.R. Katritzky and C.W. Rees, *Comprehensive heterocyclic chemistry*; C.W. Bird and G.W.H. Cheeseman, eds, Pergamon Press, New York, 1, 1984.
- 2 C. Xie, Y. Zhang, Z. Huang and P.J. Xu, J. Org. Chem., 2007, 72, 5431.
- 3 T. Ishikawa, Med. Res. Rev., 2001, 21, 61.
- 4 T. Nakanishi, M. Suzuki, A. Siamoto and T. Kabasawa, J. Nat. Prod., 1999, 621, 864.
- 5 L. Sripada, J.A. Teske and A. Deiters, Org. Biomol. Chem., 2008, 6, 263.
- 6 M.A. Lynch, O. Duval, A. Sukhanova, J. Devy, S.P. Mackay, R.D. Waigh and I. Nabiev, *Bioorg. Med. Chem. Lett.*, 2001, 11, 2643.
- 7 N.W. Luedtke, Q. Liu and Y. Tor, *Bioorg. Med. Chem.*, 2003, **11**, 5235.
- 8 H. Nishiwaki, M. Miura, K. Imai, R. Ohno and K. Kawashima, *Cancer. Res.*, 1974, 34, 2699.
- 9 R.V. Guntaka, B.W. Mahy, J.M. Bishop and H.E. Varmus, <u>Nature</u>, 1975, 253, 507.
- 10 T. Nakanishi, M. Suzuki, A. Mashiba, K. Ishikawa and T. Yokotsuka, J. Org. Chem., 1998, 63, 4235.
- 11 F.R. Stermitz, K.A. Larson and D.K. Kim, J. Med. Chem., 1973, 16, 939.
- 12 Y.M. Osornio and L.D. Miranda, Rev. Soc. Quim. Mex., 2004, 48, 288.
- 13 G.R. Pettit, V. Gaddamidi, A. Goswami and G.M. Cragg, J. Nat. Prod., 1984, 47, 796.
- 14 J. Whittaker, W.D. Mcfadyen, B.C. Baguley and V. Murray, Anti. Cancer Drug Des., 2001, 16, 81.
- 15 F.J. Alba, A. Bermudez and J.R. Daban, *Electrophoresis.*, 2001, 22, 399.
- 16 S.T. Mullins, P.G. Sammes, R.M. West and G. Yahioglu, J. Chem. Soc. Perkin Trans. 1.,1996, 75.
- 17 J. Ewing, G. Hughes, E. Ritchie and W.C. Taylor, *Nature*, 1952, **169**, 618.
- 18 J.S. Yadav, B.V. Subba Reddy, N.N. Yadav and M.K. Gupta, *Tetrahedron Lett.*, 2008, 49, 2815.

- 19 I. Yavari, M. Ghazanfarpour-Darijani, M. Sabbaghan and Z. Hossaini, *Tetrahedron Lett.*, 2007, 48, 3749.
- 20 I. Yavari, A. Mokhtarporyani-Sanandaj and L. Moradi, *Tetrahedron Lett.*, 2007, 48, 6709.
- 21 I. Yavari, Z. Hossaini and M. Sabbaghan, *Tetrahedron Lett.*, 2006, 47, 6037.
- 22 M. Nassiri, M.T. Maghsoodlou, R. Heydari and S.M. Habibi-Khorassani, Mol Divers., 2008, 12, 111.
- 23 W.K. Anderson, A.R. Heider, N. Raju and J.A. Yucht, J. Med. Chem., 1988, 31, 2097.
- 24 M. Goldbrunner, G. Loidl, T. Polossek, A. Mannschreck and E. Von Angerer, J. Med. Chem., 1997, 40, 3524.
- 25 R. Ambros, S. Von Angerer and W. Wiegrebe, Arch. Pharm., 1988, 321, 481.
- R.M. Acheson and N.F. Elmore, *Adv. Heterocycl. Chem.*, 1978, 23, 263.
 M. Kalantari, M.R. Islami, Z. Hasani and K. Saidi, *Arkivoc.*, 2006, (x),

55.

- 28 M.R. Islami, F. Mollazehi and H. Sheibani, Arkivoc., 2005, (xv), 25.
- 29 Z. Hassani, M.R. Islami, H. Sheibani, M. Kalantari and K. Saidi, Arkivoc., 2006, (i), 89.
- 30 M.T. Maghsoodlou, S.M. Habibi-Khorassani, M.K. Rofouei, S.R. Adhamdoust and M. Nassiri, Arkivoc., 2006, (xii), 138.
- 31 M.T. Maghsoodlou, S.M. Habibi-Khorassani, M. Nassiri and S.R. Adhamdoust, J. Chem. Res., 2008, 79.
- 32 N. Hazeri, M.T. Maghsoodlou, S.M. Habibi-Khorassani, M. Nassiri and Z. Afarini, J. Chem. Res., 2008, 97.
- 33 S.M. Habibi-Khorassani, M.T. Maghsoodlou, M. Zakarianezhad, M. Nassiri, M.A. Kazemian and P. Karimi, *Heteroatom. Chem.*, 2008, **19**, 723.
- 34 M.A. Kazemian, M. Nassiri, M.T. Maghsoodlou, S.M. Habibi-Khorassani and F. Vasheghani-Farahani, Arkivoc., 2008, (xvii), 173.
- 35 El. Eliel and S.H. Wilen, Stereochemistry of organic compounds. Wiley, New York, 1994, 1142.
- 36 I. Yavari, A.R. Alborzi, B. Mohtat and F. Nourmohammadian, Synth. Commun., 2008, 38, 703.